

THE LEARNER FIRST

Planning to activate all mathematical proficiencies

Adapted from Swafford \& Kilpatrick

NZMaths Planners

nzmaths.
The home of mathematics
education in New Zealand.
"w ment

Long-term Plans : Units as a starting point

Planning space

Manage and create teaching plans. Long-term plans.

Long-term plans

These long-term plans provide a starting point for planning a mathematics teaching programme for a year.

	Full-year plans	Plans, by term, in the Planning Space			
		Term 1	Term 2	Term 3	Term 4
Early level 1	w	7	7	7	7
Late level 1	w	7	7	7	7
Early level 2	w	7	7	7	7
Late level 2	w	7	7	7	7
Early level 3	w	7	7	7	7
Late level 3	w	7	7	7	7
Early level 4	w	7	7	7	7
Late level 4	w	7	7	7	7

Early and late Level 4

Term One	Term Two	Term Three	Term Four	Term One	Term Two	Term Three	Term Four
Figure me out (Thematic Unit)	Getting partial to decimals Addition and Subtraction of decimals to three places)	Areas and volumes (Areas of quadrilaterals, and triangles, volumes of cuboids)	Representing 3D objects in 2D drawings (Geometry of 3D shapes, drawing 3D shapes in 2D)	Whakatauki (Thematic Unit)	All about angles (Measuring angles, reasoning with angles as measures of turn)	Integers (Integers)	Time Zones (Measuring time, calculating with 24hour time)
Cuisenaire rod fractions: Level 4 (Ordering and comparing fractions)	Fitness or Tessellating art (Two dimensional shapes, angles, properties, tessellation)	Equivalent fractions (Equivalent fractions as numbers, fractions of sets, equal sharing)	Balancing Acts (Expressing relationships using algebraic symbols)	Multiplication and Division Pick n^{\prime} Mix 1 (Multiplication and division with whole numbers)	You can count on squares! (Area of rectangles and triangles)	Getting partial to percentages (Percentages)	x marks the spot (Cartesian co-ordinates, representing location)
Cool times with heat (Measuring temperature)	What are the chances? (Probability)	Travel to school (Statistical inquiry cycle with category data)	Getting partial to fractions (Fractional numbers)	Transformations (Symmetry)	How much bullying? (Statistical inquiry cycle, conducting surveys)	Solid Understanding (Properties of 3-D solids, nets of polyhedral, symmetry)	Flip and Roll (Probability)
What's going on? Properties of multiplication and division. (Multiplication and division of whole numbers)	Down on the farm (Linear relationships, tables, graphs, equations, word rules)	Getting partial: Fractions of sets (Fractions as operators)	Oranges or Weighty Problems (Measurement of length, area, volume, capacity, mass)	Solving linear equations (Linear relationships)	Spaced out (Volume of cuboids, metric units of volume and capacity)	Getting partial: Multiplying decimals (Multiplication of decimals)	What's soing on? Fractions (Ordering, adding, and subtracting fractions, mixed numbers)
Measuring up (Statistical Inquiry Cycle)	Matariki - Level 4 (Thematic Unit)	Marble roll (Measurement of length and time, relationships between variables)	$\frac{\text { Map It }}{\text { (Co-ordinates, Maps) }}$	Addition, subtraction, and equivalent fractions (Adding and subtracting fractional numbers, equivalent fractions)	Matariki - level 4 (Thematic unit)	Cubic Conundrums (Probability, growing patterns, drawing 3D models, volume of cuboids)	Choices (Representing linear relationships)

Setting up your own Planning Space

Planning space

Manage and create teaching plans.
Long-term plans.

Planning Space

Create, print and share your own teaching plans using nzmaths resources. You need to be logged in to use the planning space.

STEP 1
Log in to nzmaths

STEP 2

STEP 4
search using the Resource FInder or by navigating the site

STEP 5
Add resources to your plan

Print your plan and download a zip file of resources

Return to this page to manage your plans. For help with creating plans see the help file.

Recap on using the resource Finder

Choose intters to ind resources

\square Use Numeracy Stages

Select which resource type(s) you are looking for
Units of Work ? \square Rich learning activities ? \square Problem solving activities ? \square Numeracy activities ? \square Picture book activities ? \square Figure It Out activities ? \square Secondary activities ? Select a level Level Four Select a strand -Shape Select an Achievement Objective GM4-5: Identify classes of two- and three-dimensional shapes by their geometric properties.

■ Include resources where this is a supplementary Achievement Objective ?

Recap on using the resource Finder

Q search

Fitness

Level Four \| Geometry and Measurement \| Units of Work
This unit examines regular tessellations, that is, tessellations that can be made using only one type of regular polygon, and semi-regular tessellations, where more than one type of regular polygon is involved. Students are required to investigate what properties tessellating shapes must have in...

Quadrilaterals

Level Four | Geometry and Measurement | Units of Work
In this unit we conduct a couple of investigations looking at the relationship between the angle between two diagonals of a quadrilateral, the sides of the quadrilateral, and the type of quadrilateral. The main emphasis is on rectangles.

Solid Understanding

Level Four | Geometry and Measurement | Units of Work
In this unit students make and investigate various solids, including regular and semi-regular polyhedra, and cylinders and cones. They look for patterns in the numbers of faces, edges and vertices they see whether they can "discover" Euler's famous formula. By truncating the vertices of the Platonic...

Recap on using the resource Finder

Activity

Sessions 1 and 2

In these sessions the students review the names of basic geometric objects and learn to draw circles around rectangles.

1. Show students in a whole class setting, a variety of polygonal shapes for them to identify.
2. Assess their knowledge of basic concepts related to polygons such as square, rectangle, quadrilateral (any four sided polygon), kite, rhombus, vertices, edges, interior angles, diagonals.
What is this? (Show a rectangle.)
What is this part of a rectangle called (Point to vertices $=$ corners, edges $=$ sides.)
Where would I draw in a diagonal?
Describe a rectangle carefully.
Describe a square carefully.
What do these shapes have in common?
Is a square a rectangle? (Yes.)
What is a kite (rhombus)? What are its special features?
What shapes have more than one name? (A square is a rectangle, kite, rhombus; a kite is a rhombus)
3. Give the students time to make a poster with all of the different quadrilateral shapes on them.
4. Now concentrate on rectangles. Ask:

How would you draw any old rectangle?
How would you draw a rectangle with given side lengths?
5. Probably they would draw one side (with a given length); construct a right angled corner using a protractor; then measure the 'vertical' side and draw it in; repeat at the other side; join the two vertical edges to complete the rectangle. However, if they have used compasses they may be able to do this by constructing the right angles needed.

Self-Understanding | Connection | Knowledge | Competency

Recap on using the resource Finder

Home Link

Family and Whānau,
This week we have been investigating quadrilaterals (four sided shapes). Your child is working on a poster of the different quadrilaterals and their characteristics. Ask them to explain what they have found out this week and what information they are putting on their poster. Can they identify different quadrilaterals in their environment and name them? Can they teach you a new fact?

Add to plan

You are not currently using this resource on any of your plans.

Add this resource to one of your plans

- Select a plan -

Create a new plan that include this resource or manage your plans from your planning space.

臽 Printer-friendly version

Level Four

Example templates to share

Planning examples

These case studies have been developed to illustrate authentic planning carried out in schools. They are not intended to represent a single 'best practice' model.

Year 1 and 2 long-term plan

This case study describes a hypothetical long-term plan for a year 1-2 syndicate. Includes links to all relevant teaching resources.

Year 8 longterm-plan

This case study describes a hypothetical long-term plan for a year 8 syndicate. Includes links to all relevant teaching resources.

Year 9 and 10 cross-curricular planning

This case study describes Thames High School's process for developing cross-curricular units at levels 4 and 5. A collection of 7 units of work are also available.

A collection of longterm plans at levels 1-4 have been developed to provide a starting point for planning a mathematics teaching programme for a year.

Long-term Plan: Rongopai Middle School

Long Term Planning Decisions

Our syndicate prioritises topics for units based on the following criteria:

1. Areas of mathematics and statistics identified in the data where achievement of our students is relatively weak.
2. Our collective knowledge about sensible sequences of learning experiences, for example, multiplicative thinking strongly supports understanding of equivalent fractions, decimals and percentages.
3. Interests of our students, and occasions that are significant cultural events for our school community, for example, Matariki is celebrated in late Term Two every year.

We did not include a statistical investigations unit of work in this plan as an investigation planned as part of a Health and PE unit on advertising and food choices provides an opportunity to notice students' capability in the two statistics aspects.

The longtermplan for terms one and two (PDF, 101KB) includes hyperlinks to units of work; each unit is mapped against the aspects of the LPF, and against the strands and achievement objectives from the NZC. This was made by filling in the school's long-term planning template (docx, 19KB).

The sequence of units for term three and four will be determined late in term two and will be dependent on students' progress as well as the need to balance across aspects of the LPF. We anticipate that a focus on decimals, percentages, operations on fractions, decimals and percentages, geometry, statistical investigation and probability will be needed. For each unit, links to other related resources and assessment suggestions (PDF, 219KB) have been collected in a separate document.

Long-term Plan - using Units

School: Rongopai Middle School
Team: Rooms 5, 6, 7 (Tui Syndicate)
Year: Eight

Week	Term One	Term Two	Term Three	Term Four
1	Unit One Figure me out (Thematic Unit)	Unit Six All about angles		
2				
3	Unit TwoMultiplication and Division$\text { Pick n' Mix } 1$	Unit Seven You can count on squares (areas of rectangles and triangles)		
4				
5		Unit Eight Getting Partial to Fractions of Sets		
6	Unit Three What's going on? Properties of Multiplication and Division.			
7	Unit Four Solving Linear Equations (Sequential and Growing Patterns)	Unit Nine Spaced Out by Volume		
8				
9	Unit Five Getting Partial to Fractions	Unit$\frac{\text { Matariki - Level } 4}{\text { (Integrated Unit) }}$		
10				
11				

Long-term Plan - using Units

LPF Aspect	Achievement Objectives	
Geometric Thinking	Level Three	- Classify plane shapes and prisms by their spatial features. - Represent objects with drawings and models. - Use a co-ordinate system or the language of direction and distance to specify locations and describe paths. - Describe the transformations (reflection, rotation, translation, or enlargement) that have mapped one object onto another. (10)
	Level Four	- Identify classes of two- and three-dimensional shapes by their geometric properties. - Relate three-dimensional models to two-dimensional representations, and vice versa. - Communicate and interpret locations and directions, using compass directions, distances, and grid references. - Use the invariant properties of figures and objects under transformations (reflection, rotation, translation, or enlargement). (10)
Measurement Sense	Level Three	- Use linear scales and whole numbers of metric units for length, area, volume and capacity, weight (mass), angle, temperature, and time. $(7,9)$ - Find areas of rectangles and volumes of cuboids by applying multiplication. (6, 7, 9)
	Level Four	- Use appropriate scales, devices, and metric units for length, area, volume and capacity, weight (mass), temperature, angle, and time. (6, 7, 9, 10) - Convert between metric units, using whole numbers and commonly used decimals. - Use side or edge lengths to find the perimeters and areas of rectangles, parallelograms, and triangles and the volumes of cuboids. $(7,9)$ - Interpret and use scales, timetables, and charts.

LPF Aspect	Achievement Objectives	
Statistical Investigations	Level Three	Conduct investigations using the statistical enquiry cycle: (10) - gathering, sorting, and displaying multivariate category and whole-number data and simple time-series data to answer questions - identifying patterns and trends in context, within and between data sets - communicating findings, using data displays.
	Level Four	Plan and conduct investigations using the statistical enquiry cycle: (10) - determining appropriate variables and data collection methods - gathering, sorting, and displaying multivariate category, measurement, and time-series data to detect patterns, variations, relationships, and trends - comparing distributions visually - communicating findings, using appropriate displays.
Interpreting statistical and chance situations	Level Three	- Evaluate the effectiveness of different displays in representing the findings of a statistical investigation or probability activity undertaken by others. - Investigate simple situations that involve elements of chance by comparing experimental results with expectations from models of all the outcomes, acknowledging that samples vary.
	Level Four	- Evaluate statements made by others about the findings of statistical investigations and probability activities. - Investigate situations that involve elements of chance by comparing experimental distributions with expectations from models of the possible outcomes, acknowledging variation and independence. - Use simple fractions and percentages to describe probabilities.

THE LEARNER FIRST

Weekly Plans - ideas

NZ Maths / Families and whānau / Learning at home / Weekly plans

Weekly plans
Go to the school year appropriate to the child. Click on a button to view each week plan.
If the plan is too easy or too hard, move up or down a school year to find one that best suits.
Year 1

Year 6

Weekly Plans - ideas

Year 5 week 1 (number knowledge and geometry)

This week we focus on improving your knowledge of number facts and your understanding of 2-D and 3-D shapes in geometry.
This page suggests activities for each day. Click to download a printable PDF to help keep track of progress.

Day 1

Number facts activity

- Go to the activity Multiplication $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s - test yourself and follow the instructions for the variation.
- Keep the pile of facts you don't yet know somewhere safe.

OR
Number facts e-ako
The aim of the number facts learning tools are to improve your recall of facts so that you can use them to solve problems. The tools work by first finding out the facts that you know and then teaching you facts that you don't know.

There are two tools. One builds addition and subtraction facts and one builds multiplication and division (times tables).
We suggest that you start with the addition and subtraction tool and move to the multiplication one when you can answer all the addition and subtraction facts quickly.

- Go to the number facts pathway in e-ako maths.
- Choose the addition and subtraction learning tool.
- Click "Check all facts" and answer the questions. The green ticks show the facts you know.
- If you know all of the facts then tomorrow move onto the multiplication and division tool.

Geometry e-ako

- Go to the geometry pathway in e-ako maths.

WEEKLY PLANNER

Y5 Week 1 (number knowledge and geometry)

This week we focus son imporoving your knowledge of sumber facts and your understanding of 2 -.D and 3 .-D shapes in geometry.

DAY 1

Number facts activity

- Go to the activity Multiplication 2 s , 5 s and 10 s instructions for the variation
- Make a learning pile of facts you don't yet know. OR
Number facts e-ako
- Go to the number facts pathway in e-ako maths Choose the addition and subtraction learning tool
- Click "Check all facts" and answer the questions. If you
know all of the facts, move onto the multiplication and division tool.

Geometry e-ako \square 이 - Go to the geometry pathway in e-ako maths.

- Choose e-ako G3.10
(1st yellow button; 3rd row)
- Work through pages 1-9.

Geometry activity

- Go to the activity Iricky

DAY 2
Number facts activity - Select 2-3 new multiplication facts in your lea
practice today.
Ask a family member to test you OR
Number facts e-ako \square (3)

- Go back to the addition and - Go back to the addition and
subtraction learning tool. - Click "Learn a new fact" and complete 3 mini lessons. Click "Check recent facts" and answer the questions.
Return to the number facts pathway and select one of the games, below the tool, to play

Geometry e-ako Go back to e-ako G3.10 on the geometry pathway Work through pages 10-15 Geometry activity - Go to the activity The Seven Stars of Matariki and answer the questions

DAY 3
Number facts activity - Go to the activity Division 2 s . follow the instructions for the variation.

- Add the facts you don't yet
know to your learning pile. OR
Number facts e-ako
- Go back to the addition and subtraction learning tool.
- Click "Learn a new fact" and complete 3 mini lessons. Click "Check recent facts" and nswer the questions.
Return to the number facts
pathway and select one of the games, below the tool, to play,

Geometry e-ako

- Go back to e-ako G310 the geometry pathway - Work through pages 16-21.

Geometry activity \square (3) - Go to the activity Shapes in life and follow the suggestions.

DAY 4
Number facts activity to practice today.

- Ask a family member to test you Go to the activity Multiplication Loopy and follow the instruction OR
Number facts e-ako
- Go back to the addition and subtraction learning tool. Click "Learn a new fact" and complete 3 mini lessons. Click "Check recent facts" and answer the questions. Return to the number facts games, below the tool, to play

Geometry e-ako

Go back to e-ako G3.10 on the geometry pathway. Work through pages 17-26.

Geometry activity Go to the activity Postlt and work through activity 1 .

DAY 5
Number facts activity -Go to the activity Iimes Tables Practice. Read the instructions and challenge someone in OR
Number facts e-ako

- Go back to the addition and Go back to the addition and
subtraction learning tool and "Check all facts" again.
Return to the number facts pathway and try to beat your games you've or more of

Geometry e-ako \qquad (3)

- If you like, work way through e-ako G3.10 on the geometry instead of "start" on the pathway page.

Geometry activity

- Go to the activity Cutting

Go to the activity Cutting
Corners and complete the activity. Remember you could look in your recycling bin for cardboard.

Other ideas

Dr Paul Swan

5. The Lesson

Research has proven that planning lessons that are taught improves that chance students will learn the concept being taught. Sullivan (2011) presents 6 key principles specifically for the teaching of mathematics in his curriculum framing paper. A more general set of principles known as the High Impact Teaching Strategies (HITS) operate across all learning areas. Of the 6 Sullivan principles below, the starred ones also appear in research about HITS. These principles could therefore be considered extremely important.

1. Articulate goals

- Explain the purpose of the lesson to students and ensure they know what they are expected to do.

2. Making connections (build on what you know)

- Make explicit connections to previous content. This is easier if you link units of work where possible.

3. Fostering engagement

- Student engagement involves more than just the students looking at the teacher. Engagement can be fostered when activities provide a challenge for the students. Choice and relevance to daily life also play a part in engaging students. Catherine Attard's website engagingmaths.com illustrates three components of engagement.

4. Differentiating challenges

- You cannot teach 32 individual lessons at once. What you can do is take an activity and alter the content, the process or the product to differentiate it for varying abilities.

5. Structuring lessons

- Following a lesson structure keeps things moving and ensures important elements aren't missed.

6. Promoting fluency and transfer (practice)

- Sullivan recommends fluency lessons and then regularly-spaced practice, sometimes referred to as warm ups and mental maths. See Milestones (below) for basic fact fluency support.

Plan to reactivate, practice and deepen key concepts

NZMaths
Unit Plans
5 lessons
over 2 weeks
:---:
Routines
3×10 min
each week

	Concept	$\begin{gathered} \text { Week } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Week } \\ 2 \end{gathered}$	Week 3	$\begin{gathered} \hline \text { Week } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { Week } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { Week } \\ 6 \end{gathered}$	Week 7	$\begin{gathered} \text { Week } \\ 8 \end{gathered}$	$\begin{gathered} \text { Week } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { Week } \\ 10 \end{gathered}$
	Number Strategies										
	Number Knowledge (place value)										
	Number Knowledge (frac/\%/ratios)										
	Equations and expressions										
	Patterns and relationships										
	Measurement (conversions)										
	Measurement (length, mass)										
	Measurement (angles)										
	Measurement (time)										
	Measurement (perimeter \& area)										
	Measurement (volume)										
	Shape										
	Position and direction										
	Transformation										
	Statistical Investigations										
	Statistical literacy										
	Probability										

The key ideas and elaborations for each sub-strand

THE LEARNER FIRST

Keep shape concepts alive in Year 7/8

Rapidroutines

- 2 or 3 procedural questions
- 2 or 3 times a week
- Whole class on whiteboards
- Teacher facilitates
- One question chosen
- Whole class "DiscussnDefend"

Keep place value concepts alive in Year 7/8

Rapidroutines

Monday	Wednesday	Friday
How many tens altogether in 450?	How many hundreds altogether in 15000	How many tenths altogether in 1.5?
What number comes next? $1250,1150,1050, ?$	What number comes next?	What number comes next?
What has been added to 750000 to make $850000 ?$	What has been subtracted from $1000 ~ 000 ~ t o ~ m a k e ~$	200, 10 100, 10 000 $100000 ?$

Choose one question where ākonga have opportunities to communicate and share their thinking, their methods, their langauge.
Kaiako can use insights to assist future planning of questions.
THE LEARNER FIRST

Many sources we use including...

©

Any recommendations?

